Instituto Centro de Ensino Tecnológico

Aula 10

Microcontroladores: Programação em C

Prof. Tecgº Flávio Murilo

Eletroeletrônica – Microcontroladores – Módulo IV

11/04/2013

 Conversores analógico digitais (conversores A/D ou ADC) convertem um sinal analógico em um equivalente digital, comumente com resoluções de 8 bits variando valores entre 0 (00000000) e 255 (11111111), 10 bits variando valores entre 0 (000000000) e 1023 (11111111), etc.

Eletroeletrônica – Microcontroladores – Módulo IV

Conversor A/D – Conceitos

 Essa conversão é feita por base na leitura de tensão e de corrente numa porta do microcontrolador e dependendo da resolução utilizada, cada nível de tensão tem um valor binário equivalente. Por exemplo: Se for feita a leitura de um sinal analógico que varia de 0 a 5V a uma resolução de 8 bits (variação de valores de 0 a 255) então teremos que a cada (5/255)V teremos um incremento no valor digital.

Eletroeletrônica – Microcontroladores – Módulo IV

 Sendo assim, 5/255 é igual a aproximadamente 0.0196. Então a cada 0.0196V teremos um incremento no valor digital. Esse processo é chamado de discretização, ou digitalização.

Passo da resolução	Tensão lida	Equivalente binário
0	0 * 0.0196 = 0V	0000000
1	1 * 0.0196 = 0.0196V	0000001
2	2 * 0.0196 = 0.0392V	0000010
150	150 * 0.0196 = 2,94V	10010110
255	255 * 0.0196 ≈ 5V	1111111

Eletroeletrônica – Microcontroladores – Módulo IV

Conversor A/D – ADC x PWM

- Após ativar (setar) o canal ADC, usando o comando set_adc_channel(canal); (sendo o valor do canal de 0 a 7, em um PIC com 8 canais), estes valores resultantes da variação pode ser tratados como variáveis através do comando de leitura v=read_adc(); (a variável v recebe o valor da conversão AD.
- Se o valor da variável for usado para setar o ciclo ativo (duty cicle) em um controle PWM, há que se fazer a relação entre a resolução do canal ADC e a carga (período) do Timer2.
- **Exemplo:** Se a resolução do ADC for de 8 bits (0 a 255) e a carga do timer2 variar de 0 a 149, então temos:

Valor ADC	Valor PWM	Tensão equivalente
0	0	0V
255	149	5V

Eletroeletrônica – Microcontroladores – Módulo IV

• Logo, podemos estabelecer a seguinte relação:

 $\blacktriangleright \frac{Res(ADC)}{Res(PWM)} = \frac{5V/255}{5V/149} = \frac{0,01960784313725V}{0,03355704697986V} = 0,58431372549015$

- Em outras palavras, podemos dizer que se a cada "passo" na resolução do ADC (1 em uma variação de 0 a 255) temos 0,019607...V e a cada "passo" na resolução do PWM (1 em uma variação de 0 a 149) temos 0,033557...V, então a variável precisa ser tratada por um "fator de conversão" de 0,584313...
- Para facilitar trabalhar com PWM e ADC em conjunto, basta trabalhar com a resolução de ambos iguais, pois se Res(ADC) = Res(PWM), então Res(ADC)/Res(PWM) = 1. Dessa forma, é só usar o valor lido para uma variável diretamente.

Eletroeletrônica – Microcontroladores – Módulo IV

• Logo, podemos estabelecer a seguinte relação:

 $\blacktriangleright \frac{Res(ADC)}{Res(PWM)} = \frac{5V/255}{5V/149} = \frac{0,01960784313725V}{0,03355704697986V} = 0,58431372549015$

- Em outras palavras, podemos dizer que se a cada "passo" na resolução do ADC (1 em uma variação de 0 a 255) temos 0,019607...V e a cada "passo" na resolução do PWM (1 em uma variação de 0 a 149) temos 0,033557...V, então a variável precisa ser tratada por um "fator de conversão" de 0,584313...
- Para facilitar trabalhar com PWM e ADC em conjunto, basta trabalhar com a resolução de ambos iguais, pois se Res(ADC) = Res(PWM), então Res(ADC)/Res(PWM) = 1. Dessa forma, é só usar o valor lido para uma variável diretamente.

Eletroeletrônica – Microcontroladores – Módulo IV

- Algumas características relativas a Conversão Analógica Digital devem ser levadas em consideração, são elas:
 - Canais se conversão são portas (pinos) de entrada para conversão AD.
 - Os módulos fazem a conversão do valor lido do canal para um equivalente binário.
 - Alguns microcontroladores possuem 8 canais para conversão (16F877A), outros 10 canais (18F2550) e alguns nenhum canal (16F628A).
 - Embora alguns microcontroladores tenham vários canais, todos eles possuem apenas um módulo de conversão.
 - Não se pode utilizar mais de um canal simultaneamente num mesmo microcontrolador, dessa forma, é necessário desabilitar um para poder habilitar outro.

Eletroeletrônica – Microcontroladores – Módulo IV

• Crie um novo projeto pelo PIC Wizard.

Eletroeletrônica – Microcontroladores – Módulo IV

11/04/2013

 Em "Device" selecione o PIC utilizado. Desative o "Master Clear", caso seja necessário e configure o clock. Depois na aba "Analog", selecione quais canais ADC deseja utilizar.

None None A0 A1 A2 A3 A5 B2 B3 B1 B4 B0 A0 A1 A2 A3 A5 B2 B3 B1 B4 A0 A1 A2 A3 A5 B2 B3 B1 B4 A0 A1 A2 A3 A5 B2 B3 B1 A0 A1 A2 A3 A5 B2 A0 A1 A2 A3 A5 B2 A0 A1 A2 A3 A5 A0 A1 A2 A3 A5 A0 A1 A2 A3 A0 A1 A2 A0 A1 A2 A0 A1 A2	Range 0-Vdd Units: 0-255 Internal 2-6us	•	X Car
			View Cod Generate from this t

Eletroeletrônica – Microcontroladores – Módulo IV

 Ainda na aba "Analog", selecione o Range (Variação), a resolução (0 a 155 – resolução de 8 bits, 0 a 1023 – resolução de 10 bits, etc) e o por fim o clock. Feito isso, clique em "OK".

New project		— X
Analog Input Analog Pins None A0 A1 A2 A3 A5 B2 B3 B1 B4 B0 A0 A1 A2 A3 A5 B2 B3 B1 B4	Range 0-Vdd Units: 0-255 Internal 2-6us	V OK Х Cancel Сапсеl
 A0A1 A2 A3 A3 B2 B3 B1 A0A1 A2 A3 A5 B2 B3 A0A1 A2 A3 A5 B2 A0A1 A2 A3 A5 A0A1 A2 A3 A0A1 A2 A0A1 A0A1 		
		View Code Generated from this tab
General (Communications (SPI and LCD (Timers (PCHTimers Ar	alog/Dther /Interrupts /Drivers /I/O Pins /High/L	.ow Voltage / 💌

Eletroeletrônica – Microcontroladores – Módulo IV

 As duas primeiras linhas do código gerado são referentes à configuração feita no compilador.

Eletroeletrônica – Microcontroladores – Módulo IV

- No Proteus iremos fazer um exemplo usando os seguintes componentes:
 - Microcontrolador PIC 18F550;
 - Potenciômetro (POT-HG);
 - Aterramento (GROUND da aba Terminals Mode);
 - Sciloscópio (OSCILLOSCOPE da aba Virtual Instruments Mode);
 - Fonte CC (DC da aba Generator Mode);
 - Leitor de tensão (Voltage Probe).

Eletroeletrônica – Microcontroladores – Módulo IV

11/04/2013

Conversor A/D – Proteus

• Monte o circuito como na figura:

Eletroeletrônica – Microcontroladores – Módulo IV

Conversor A/D – Proteus

Configure o DC Generator para fornecer uma tensão de 5V.

Eletroeletrônica – Microcontroladores – Módulo IV

11/04/2013

• No microcontrolador configure a frequência do clock do processador como 20MHz, escolha o arquivo do programa e simule.

Edit Component			? ×
Component <u>R</u> eference: Component <u>V</u> alue:	U1 PIC18F2550	Hidden: 🗌 Hidden: 🗌	<u>Q</u> K <u>H</u> elp
Program Configuration Word: PCB Package:	0x3FFA SPDIL28	Hide All Hide All	<u>D</u> ata Hidden <u>P</u> ins
Program File: Processor Clock Frequency:	ADC.hex [20MHz	ide All ▼ Fide All ▼	<u>C</u> ancel
USB Host Computer Address: Advanced Properties: Watchdog Timer Period	Iocalhost	Hide All	
Other <u>P</u> roperties:		*	
Exclude from <u>S</u> imulation Exclude from PCB <u>L</u> ayout Edit <u>a</u> ll properties as text	Attach hierarchy <u>m</u> odule Hide <u>c</u> ommon pins		

Eletroeletrônica – Microcontroladores – Módulo IV

Conversor A/D – Exemplos

• **Exemplo 01:** Com o circuito montado, faça a modulação da largura de pulso através do controle do potenciômetro. Depois adicione um motor no circuito e observe a variação da velocidade de acordo com o ajuste da resistência.

Eletroeletrônica – Microcontroladores – Módulo IV

11/04/2013

- Fazer o comentário das linhas de todos os códigos referentes aos exemplos mostrados em sala de aula. Os arquivos que devem ser comentados são os de extensão .c e estão disponíveis para download no site.
- Para comentar, basta abrir o arquivo .c no compilador e digitar a descrição da linha usando // no início do comentário e no final da linha.
- Em caso de dúvidas, faça a simulação usando o Proteus. Os arquivos dos circuitos também estão disponíveis para download no site.
- Lembre de mudar os endereço dos "includes" para a pasta onde está o arquivo que está sendo incluído no código.
- Lembre também de procurar o arquivo a ser simulado na configuração do micrcontrolador no Proteus.
 - Prazo para entrega: 18/04/2013
 - Site: <u>www.muriloleal.com.br</u>
 - E-mail: murilo@muriloleal.com.br

Eletroeletrônica – Microcontroladores – Módulo IV

